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Abstract

Deep learning has significantly advanced research within natural lan-
guage processing in recent years. Beyond language, novel transformer-
based architectures have shown promise as tools to model various mul-
tivariate sequences. These include weather patterns, musical composi-
tions, and protein structures. Similarly, human lives represent another
form of multivariate sequences comprising various events: People are
born, attend kindergarten, visit doctors, relocate to new cities, and
more.

By drawing parallels between human lives and written language,
we propose a novel methodology to study individual life trajectories.
We use the Danish National Registry to create an artificial symbolic
language. It transforms socioeconomic and health events into a struc-
tured, sentence-like format, akin to the words and sentences in a lan-
guage.

This representation approach lays the groundwork for our primary
contribution: developing the life2vec model, a transformer-based
model designed for analyzing life trajectories. In the thesis, we demon-
strate that the life2vec model captures complex relationships between
various life events and uses this knowledge to provide insights into
early mortality and personality. A key strength of life2vec lies in
interpretability, as we can use it to explore the influence of socioeco-
nomic and health factors on individual life paths.

The findings from this thesis underscore the potential of transformer
models in understanding and predicting human behavior and experi-
ences.

Exc
erp

ttions, and protein structures. Similarly, human lives represent another

Exc
erp

ttions, and protein structures. Similarly, human lives represent another
form of multivariate sequences comprising various events: People are

Exc
erp

tform of multivariate sequences comprising various events: People are
born, attend kindergarten, visit doctors, relocate to new cities, and

Exc
erp

tborn, attend kindergarten, visit doctors, relocate to new cities, and

By drawing parallels between human lives and written language,

Exc
erp

t
By drawing parallels between human lives and written language,

we propose a novel methodology to study individual life trajectories.

Exc
erp

t
we propose a novel methodology to study individual life trajectories.
We use the Danish National Registry to create an artificial symbolic

Exc
erp

t
We use the Danish National Registry to create an artificial symbolic
language. It transforms socioeconomic and health events into a struc-

Exc
erp

t
language. It transforms socioeconomic and health events into a struc-
tured, sentence-like format, akin to the words and sentences in a lan-

Exc
erp

t
tured, sentence-like format, akin to the words and sentences in a lan-

This representation approach lays the groundwork for our primary

Exc
erp

t
This representation approach lays the groundwork for our primary

life2vec

Exc
erp

t
life2vec model, a transformer-based

Exc
erp

t
model, a transformer-based

model designed for analyzing life trajectories. In the thesis, we demon-

Exc
erp

t
model designed for analyzing life trajectories. In the thesis, we demon-

model captures complex relationships between

Exc
erp

t
model captures complex relationships between

various life events and uses this knowledge to provide insights intoExc
erp

t
various life events and uses this knowledge to provide insights into
early mortality and personality. A key strength ofExc

erp
t

early mortality and personality. A key strength ofExc
erp

t

interpretability, as we can use it to explore the influence of socioeco-Exc
erp

t

interpretability, as we can use it to explore the influence of socioeco-
nomic and health factors on individual life paths.Exc

erp
t

nomic and health factors on individual life paths.
The findings from this thesis underscore the potential of transformerExc

erp
t

The findings from this thesis underscore the potential of transformer
models in understanding and predicting human behavior and experi-

Exc
erp

t

models in understanding and predicting human behavior and experi-



Exc
erp

t



Resumé

Deep learning har i de seneste år fremmet forskningen i naturlig sprog-
behandling betydeligt. Udover sprog, har nye transformer-baserede
arkitekturer vist sig lovende som værktøjer til at modellere forskelli-
gartede multivariate sekvenser. Disse inkluderer vejrmønstre, musikal-
ske kompositioner og proteinstrukturer. Menneskeliv repræsenterer
på samme vis en form for multivariate sekvenser, der omfatter forskel-
lige begivenheder: Folk bliver født, går i børnehave, går til læge, flytter
til nye byer og mere.

Ved at drage paralleller mellem menneskeliv og det skrevne sprog
foreslår vi en ny metodik til studiet af individuelle livsforløb. Vi benyt-
ter Folkeregisteret til at skabe et kunstigt symbolsk sprog. Det trans-
formerer socioøkonomiske og sundhedsmæssige begivenheder til et
struktureret, sætningslignende format, sammenligneligt med ordene
og sætningerne i et sprog.

Denne repræsentationstilgang danner grundlaget for vores primære
bidrag: udviklingen af life2vec-modellen; en transformer-baseret model
designet til at analysere livsforløb.

I denne afhandling demonstrerer jeg at life2vec-modellen fanger
komplekse sammenhænge mellem forskelligartede livsbegivenheder
og benytter denne viden til at give indsigter i tidlig dødelighed og per-
sonlighed. En vigtig egenskab ved life2vec ligger i fortolkningsgraden,
da vi kan bruge den til at udforske indflydelsen af socioøkonomiske
og sundhedsmæssige faktorer på individuelle livsforløb.

Resultaterne fra afhandlingen understreger transformer-modellernes
potentiale til at forstå og forudsige menneskelig adfærd og oplevelser.
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Preface

The way I wrote the thesis is partly inspired by the stats book by Field
and Hole1. It was mandatory reading for one of the courses I studied 1 A. Field and G. Hole. How to Design and

Report Experiments. Sage, 2002during my bachelor studies in Medialogy at Aalborg University. That
is how I got into statistics and machine learning in the first place.
How could you not after reading about the drug-induced cats and
hats forgotten in a freezer?

Scope of the thesis. The material of the thesis covers one publica-
tion developed during the Ph.D. project, namely

Savcisens, Germans, Tina Eliassi-Rad, Lars Kai Hansen, Laust Hvas
Mortensen, Lau Lilleholt, Anna Rogers, Ingo Zettler, and Sune Lehmann.
"Using Sequences of Life-events to Predict Human Lives." Accepted at
Nature Computational Science (2023). DOI: 10.1038/s43588-023-00573-5

The thesis does not cover other publication developed during the Ph.D
project

Fernández, Elena Fernández, and Germans Savcisens. “A Sustainable
West? Analyzing Clusters of Public Opinion in Sustainability Western
Discourses in a Collection of Multilingual Newspapers (1999-2018).”
Digital Humanities in the Nordic and Baltic Countries Publications 5, no. 1

(2023): 165-187.

Denove, Emmanuelle, Elisa Michelet, Germans Savcisens, and Elena
Fernández Fernández. “An Industrial West? A Quantitative Analysis
of Newspapers Discourses about Technology over Ninety Years (1830-
1940).” Preprint at http://doi.org/10.5281/zenodo.8255722 (2023).

The peer-reviewed and accepted version of the “Using Sequences of
Life-events to Predict Human Lives” paper is available in the Appendix
materials, along with the peer-reviewed and accepted version of the
“A Sustainable West? Analyzing Clusters of Public Opinion in Sustainabil-
ity Western Discourses in a Collection of Multilingual Newspapers (1999-
2018)” paper.

Purpose of the thesis. I wrote this thesis as a series of hypothet-
ical lecture notes on using Large Language Models (LLM) to explore
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socioeconomic and health life-trajectories.
I wrote it so that any person with a basic understanding of statis-

tics and basic knowledge of machine learning (but who might still be
uncomfortable within the areas of natural language processing, repre-
sentation learning, and deep learning) could still understand the mo-
tivation and the theory behind decisions and results of the life2vec

model.
Secondly, the fact that LLMs become a more prominent part of our

lives also contributed to how I present the material. LLMs seem to
be all-powerful models and, in the eyes of many, are surrounded by a
certain mystic added by the over-promising tech industry – but LLMs
do have limitations.

I take this opportunity not only to present how we can use LLMs
to look at human lives from a new viewpoint but also to demonstrate
what LLM are essentially capable (and not capable of).

Main question. The question that I explore in my thesis is: How
do we adapt the neural representation methods to model human behavior and
experiences? To answer this, my research focuses on two key aspects:

1. use of the National Registry Data to study socioeconomic and health
trajectories,

2. using Transformer-based models to capture and interpret phenom-
ena in these life trajectories.

As I demonstrate in the thesis, life trajectories are conceptually sim-
ilar to sequential signals such as text, music, or protein structure. As
one can understand: “Sage got a full position as an Insurance Agent
after many years of work as a Realtor,” so one can transcribe it using
simple symbols to communicate similar information, and so one can
teach a computer to understand it.

Structure of the thesis In the Provenance chapter, I provide the
motivation behind the use of the Danish Registry data for the explo-
ration of human behavior. I also provide the motivation and theory
behind the use of the transformer-based models.

In the Unfolding chapter, I describe what kind of data we use to an-
alyze socio-economic and health life trajectories. I also provide details
on the artificial symbolic language that transcribes tabular data into
the life-sequence.

In the Instrument chapter, I provide a detailed description of the
life2vec model and the results of the pretraining of life2vec. I show
how we can use it to study relationships between various life-events.

In the Divinations, I show how we use life2vec for specific tasks
such as mortality prediction and personality nuance prediction tasks.
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This chapter also describes the method for the life2vec explainability.
The final chapter, Coda, contains a short work summary.

Use of the Generative AI. During the development of the thesis, I
used the following platforms and models for image generation, infor-
mation search, text formatting, and proofreading:

• MidJourney,

• Adobe Firefly,

• Microsoft Copilot with Bing Chat,

• GPT-4 (including “Research by Vector” plugin),

• DALLE-3,

• GrammarlyGO.

Writing. I use “we” and “I” interchangeably to improve the flow.
You will also notice that I use commas as a thousands separator, e.g.,
1, 000 or 1, 000, 000. I utilize italicized symbols, such as s, to specify
scalars, and bold symbols, like Z and z, to denote matrices or vec-
tors. I use this symbol · for the dot product, this symbol × exclusively
for the scalar multiplication, and this symbol � for the element-wise
multiplication.

And finally, I know it gets a little bit silly in some places, mainly
due to my love of arbitrary quotes – but I prefer to keep it that way.
Enjoy!
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